TMDL Calculations for San Diego Creek - Loading Capacity | | v | | Log of | Sediment** | Sediment
Concentration | | | | | | |------------------------|--|-----------------------------------|----------------------------|--|---|---|---|---|---|--| | Flow | Duration | Flow* | Sediment | Yield | C _s | | | | | | | Tier | (days) | (cfs) | Yield | (t/day) | (mg/L) | | | | | | | Base & Low | 352 | 15 | 0.54996 | 3.548 | 97 | | | | | | | Medium | 10 | 365 | 3.18865 | 1544 | 1729 | | | | | | | High | 3 | 1595 | 4.29099 | 19543 | 5008 | Target Conc. | | | Partition | Dissolved | Dissolved | Dissolved | Particulate | Particulate | Particulate | | | Target Conc.
in Sediment*** | | | Partition
Coefficient | Dissolved Fraction (f_d) | Dissolved
Fraction (f_d) | Dissolved
Fraction (f_d) - | Particulate
Fraction (f _p) | Particulate
Fraction (f _p) | Particulate
Fraction (f p) | | | • | Log K₀c | f_{oc} | | | | | | | | | Total DDT | in Sediment*** | Log K_{oc}
6.48 | <i>f_{oc}</i> 0.01 | Coefficient | Fraction (f _d) | Fraction (f d) | Fraction (f d) - | Fraction (f p) | Fraction (f p) | Fraction (f p) | | Total DDT
Chlordane | in Sediment***
(μg/kg) | • | | Coefficient
K _d (m³/g) | Fraction (f _d)
Low Flow | Fraction (f _d)
Medium Flow | Fraction (f _d) -
High Flow | Fraction (f _p) Low Flow | Fraction (f _p)
Medium Flow | Fraction (f_p) High Flow | | | in Sediment***
(μg/kg)
6.98 | 6.48 | 0.01 | Coefficient K_d (m^3/g) 0.03020 | Fraction (f _d) Low Flow 0.2551 | Fraction (f _d) Medium Flow 0.0188 | Fraction (f _d) -
High Flow
0.0066 | Fraction (f _p) Low Flow 0.7449 | Fraction (f _p) Medium Flow 0.9812 | Fraction (f _p) High Flow 0.9934 | | Chlordane | in Sediment***
(μg/kg)
6.98
4.5 | 6.48
6.21 | 0.01
0.01 | Coefficient K _d (m³/g) 0.03020 0.01622 | Fraction (f _d) Low Flow 0.2551 0.3894 | Fraction (f _d) Medium Flow 0.0188 0.0344 | Fraction (f _d) -
High Flow
0.0066
0.0122 | Fraction (f _p) Low Flow 0.7449 0.6106 | Fraction (f _p) Medium Flow 0.9812 0.9656 | Fraction (f _p) High Flow 0.9934 0.9878 | | | CCC
(Chronic Criterion)
(μg/L) | CMC
(Acute Criterion)
(μg/L) | Concentration**** in Water Col. $C_w \; (\mu g/L)$ Low Flow | Concentration
in Water Col.
C _w (μg/L)
Medium Flow | Concentration
in Water Col.
C _w (µg/L)
High Flow | Selected Value
CTR vs. Cw
(µg/L)
Low Flow | Selected Value
CTR vs. Cw
(µg/L)
Medium Flow | Selected Value
CTR vs. Cw
(µg/L)
High Flow | |------------|--------------------------------------|------------------------------------|---|--|--|--|---|---| | Total DDT | 0.0010 | 1.1000 | 0.0009 | 0.0123 | 0.0352 | 0.0009 | 0.0010 | 0.0352 | | Chlordane | 0.0043 | 2.4000 | 0.0007 | 0.0081 | 0.0228 | 0.0007 | 0.0043 | 0.0228 | | Dieldrin | 0.0560 | 0.2400 | 0.0017 | 0.0063 | 0.0157 | 0.0017 | 0.0063 | 0.0157 | | Toxaphene | 0.0002 | 0.7300 | 0.00005 | 0.0002 | 0.0005 | 0.00005 | 0.0002 | 0.0005 | | Total PCBs | 0.0140 | | 0.0057 | 0.0614 | 0.1732 | 0.0057 | 0.0140 | 0.1732 | | | Loading | Loading | Loading | Total | |------------|-----------------|-----------------|-----------------|-----------------| | | Capacity (g/yr) | Capacity (g/yr) | Capacity (g/yr) | Loading | | | Low Flows | Medium Flows | High Flows | Capacity (g/yr) | | Total DDT | 11.70 | 8.93 | 411.84 | 432.46 | | Chlordane | 9.20 | 38.39 | 267.01 | 314.61 | | Dieldrin | 21.59 | 56.46 | 183.39 | 261.43 | | Toxaphene | 0.64 | 1.79 | 6.33 | 8.75 | | Total PCBs | 73.75 | 124.99 | 2027.02 | 2225.76 | ^{*}Flows were determined from stream gaging data at San Diego Creek & Campus Drive for years 1977-1997 Calculated water column concentrations (C_w) for low and medium flows were compared to CTR chronic criteria, and high flows were compared with CTR acute criteria. There is no CTR acute criterion for PCBs; therefore calculated Cw for high flows were used to determine loading capacity for PCBs. - 1. Use sediment yield (tons/day) to calculate C_s = suspended sediment concentration (mg/L) Example: (3.548 tons/day * 1000 kg/ton * 1000 g/kg * 1000 mg/g) / (15 ft³/sec* 86400 sec/day * 28.31 L/ft³) = 97 mg/L - 2. Use calculated Cs values and partitition coefficients (K_d) to calculate the dissolved fraction (f_d) for each contaminant. f_d values are normalized to a TOC of 1%. K_d (m^3/g) = K_{oc} (L/kg) * f_{oc} / 10^6 and f_{d} =1/(1+ K_d * C_s) - 3. Use calculated f_d values to calculate the particulate fraction (f_p) for each contaminant. F_p=1-f_d - 4. Calculate total pollutant concentration in the water column (C_w), based on 1-3, above. C_w=C_t*C_s*(1/F_p)*10^-6 - 5. Calculate loading capacity (using either calculated aqueous concentrations or CTR concentrations, as applicable) Load $(g/yr) = C_w * Q * 28.31 * 86400 * #days of flow <math>(Q_d) * 10^{4}$ ^{**}Sediment Yield was determined from the regression equation taken from the RMA 1997 report to ACOE on the feasibility study for Upper Newport Bay restoration. The equation is log(y) =-0.09(log(x)^2)+2.24(log(x))-1.96, where y = sediment (tons/day) and x is flow (cfs) ^{***}Sediment target values are equal to the threshold effect levels (TELs) from the NOAA Sediment Screening Quick Reference Tables (SQuiRTs) (Buchman, 1999). ^{****}Most conservative numbers are to be used in calculating loading capacity.